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Aim of the study

Challenge: Estimate phytoplankton primary production from space

Primary production can be computed B '

. T P, !
using a photosynthesis-light model: L Mo ey
PB(z) = PB(I(z); aB, PE) ;

Superscript B indicates
normalisation to chlorophyll
biomass B.

Production PP

PB Normalised production;
z: depth; I: irradiance;
a8 : initial slope;
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Specific objective of the study:
Estimate the assimilation number globally from remote sensing data



General approach

» If no photo-inhibition, maximum primary production Ppax = BPE

. . Lo . dc,
» Maximum primary production is also given by Pmax = Tf'max
where C, is the phytoplankton carbon concentration
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> Maximum growth rate: pmax = %Tf'max
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Assimilation number: Pn’?, = /.Lmax%-' = X[max
where x is the carbon-to-chlorophyll ratio
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where x is the carbon-to-chlorophyll ratio

Eppley (1972) defines the maximum
growth rate as a function of
temperature:
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Three models

Two ways of estimating carbon-to-chlorophyll ratio:

10(1-81+0.63xlog1 g (Chl))

1. Sathyendranath et al. 2004: x° = o

(gives an upper limit of x)

1
2. Cloern et al. 1995: x© = [0.003 +0.0154 exp(0.05T) exp(—o.osgl),w[%]w]
where N is the nutrient concentration
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2. Cloern et al. 1995: x¢ = [0.003 +0.0154 exp(0.05T) exp(—0.0SQl)%] -
where N is the nutrient concentration

Combining these two model and the maximum growth rate formulation from Eppley (1979), we
can approach computation of assimilation number as follows:

> Model 1: PE = £(Chl, T) = X" fimax
> Model 2: PE =f(I,N, T) = X tmax
» Model 3:
PE = f(I,N, Chl, T) = [(XS)—l +0.0154 exp(0.05T) exp(—o.osgl)K—Nl%lm] .



Results: in-situ

Model applied to a large database (> 700 measurements): PE, Chl, T, mixed layer depth,
surface PAR, nitrates

=—> Gaps filled with climatological data (for surface PAR and nitrates)

= North West Atlantic, subtropics (Gulf of Mexico and Arabian Sea), Middle Atlantic
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Results: remote sensing application

Data used (all monthly composites), 2004:
> SeaWiFS cholophyll-a concentration
> MODIS sea surface temperature
> SeaWiFS surface PAR
» World ocean atlas surface nitrate concentration
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Results: remote sensing application

Data used (all monthly composites), 2004:
> SeaWiFS cholophyll-a concentration
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Results: remote sensing application

> Model 1 (f(Chl, T)) overestimates
PE in oligothrophic waters

» Model 2 and 3 have stronger
latitudinal seasonal variations
because of the light

» Model 3: estimates of PE are too

low
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Implementation in coastal waters

Assimilation number: PE = f(B, T, N, I)

B —>  Coastcolour product (case 2 water)

l = I(z) = 1(0) exp(—Kz)

1(0), K =  Coastcolour products (case 2 water)

T —>  Satellite sea surface temperature

N —>  Climatological data (World Ocean Atlas)



Conclusion

> We have tested three different models for estimating P

Comparison with in-situ data has shown three contrasting results, and each model has skill in
a different region of the globe

Overall Model 2 (f(/, N, T)) seems to be able to estimate the assimilation number
reasonably well at global scale

Future work:

> Develop a model to estimate the initial slope of the photosynthesis-light curve (aB)
» Estimate primary production
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